Make the Leap from GC to LC-MS/MS

Jun 27, 2019 | Blogs, Technology | 0 comments

Choosing the best technique for your analysis can be tough. Should you go with gas chromatography/mass spectrometry (GC-MS) or liquid chromatography/tandem mass spectrometry (LC-MS/MS)? That’s the key question. That’s why we’re here to help.

The Limitations of GC-MS
GC-MS is an established technique to analyze volatile organic compounds (VOCs) and trihalomethanes (THMs). Simply put, it’s a technique that’s best used for thermally stable molecules. Traditionally, GC-MS is the preferred technique for the analysis of less polar and more volatile compounds such as organochlorine pesticides, dioxins, and polychlorinated biphenyl.

While the technique can offer good separation, the high temperatures used for vaporization during GC analysis can alter or degrade half of the analytes in a sample1. This is the primary concern for life science researchers who deal with relatively labile biological molecules that break down easily at high temperatures. GC-MS also becomes a challenge because it can involve labor-intensive sample preparation and long chromatographic run times.

The LC-MS/MS Advantage
LC-MS/MS combines the separation power of liquid chromatography with the identification and quantification power of tandem mass spectrometry.

The strength of this technique is in the ability of LC to separate a wide range of compounds before the tandem MS quantifies them with a high degree of sensitivity and selectivity based on the unique mass/charge (m/z) transitions of each compound of interest.

LC-MS/MS systems offer these basic benefits:

  • Faster, simpler sample preparation
  • Direct injection of aqueous samples
  • Less need for derivatization
  • Shorter chromatographic run times
  • Increased selectivity and sensitivity with multiple reaction monitoring (MRM)
  • Screening for a wider range of compounds in a single analysis

Many scientists who need increased levels of sensitivity, reproducibility, and robustness over GC-MS are either considering or have already made the leap to LC-MS/MS. When will you?

Let SCIEX Help You Make the Leap from GC-MS to LC-MS/MS

If your budget is holding you back, we have news for you. The SCIEX Triple Quad™ 3500 System provides all the advantages of modern LC-MS/MS technology. It’s the ideal choice for labs operating on a tight budget, and its simplicity of operation has the potential to expand your operation beyond the restrictions of gas chromatography.

Simply put, the Triple Quad 3500 LC-MS/MS System explained in fewer than 140 characters: Legendary power, speed, and accuracy are more affordable than ever.

Download your copy of the compendium to see what the SCIEX Triple Quad 3500 LC-MS/MS system can do for your laboratory.

Reference:

  1. Fang, Mingliang, et al. “Thermal degradation of small molecules: a global metabolomic investigation.”  Analytical Chemistry 87.21 (2015): 10935-10941.

Pure and simple: Understanding LNP analytics for better mRNA-based drugs

A few years ago, it was discovered that messenger RNA (mRNA) encapsulated in lipid nanoparticles (LNPs) could result in mRNA adducts due to the breakdown products of N-oxide impurities. The ionizable lipids used in LNPs are especially susceptible to forming N-oxide impurities.

Is the next life-changing drug waiting to be analyzed in your laboratory?

In drug discovery laboratories, there is often a need to generate trusted analytical data on hundreds of thousands of drug candidates to allow confident decisions to be made. Sample prep, instrument run time, and data processing are all challenges that must be overcome.

Mass spec data across the cultivated meat value chain

We recently had the opportunity to chat with Alex Ward, PhD, Principal Consultant, Arta Bioanalytics to discover more about his work in developing transcriptomics and metabolomics data interpretation for the cultivated meat sector. As a specialist in multi-omics approaches, Alex is driving R&D, production and regulatory processes for the industry. Below are Alex’s responses to a few questions we asked, sharing his knowledge with the SCIEX community to drive the future of cultivated meat.

Posted by

0 Comments

Submit a Comment

Social Share Buttons and Icons powered by Ultimatelysocial